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INTRODUCTION

In this paper, we focus on the out-of-distribution
(OOD) generalization of self-supervised learning
(SSL). By analyzing the mini-batch construction dur-
ing the SSL training phase, we first give one plausi-
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condition, the worst-case generalization risk of self-

learns spurious correlations during the training pro-
cess, which leads to a reduction in OOD general-
ization. To address this issue, we propose a post-
intervention distribution (PID) grounded in the Struc-
tural Causal Model. PID offers a scenario where the
spurious variable and label variable is mutually inde-
pendent. Besides, we demonstrate that if each mini-
batch during SSL training satisties PID, the resulting
SSL model can achieve optimal worst-case OOD per-
formance. This motivates us to develop a batch sam-
pling strategy that enforces PID constraints through
the learning of a latent variable model. Through the-
oretical analysis, we demonstrate the identifiability
of the latent variable model and validate the effec-
tiveness of the proposed sampling strategy. Experi-
ments conducted on various downstream OOD tasks
demonstrate the effectiveness of the proposed sam-
pling strategy.

CONTRIBUTIONS

1. Analysis of SSL Batch Construction: We provide
a detailed analysis of how mini-batch construc-
tion in SSL influences OOD generalization

. Causal Framework for SSL: We introduce a
causal framework to understand and mitigate
the impact of spurious correlations for SSL.

. PID-Based Sampling Strategy: We propose
a theoretically grounded mini-batch sampling
strategy that ensures the generated batches con-
form to PID, improving OOD performance.

. Empirical Validation: Extensive experiments
demonstrate the significant improvements of
our method in OOD generalization.
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Figure 1: Structural Causal Model (SCM). These instances
illustrate the variability in the causal relationship between

z'*"°! and s due to environmental changes. The black

squares are variables and the arrows indicate causality.

Self-supervised learning (SSL) enables model training
without labels and has achieved performance on par
with, or exceeding, supervised methods. However,
despite strong in-distribution results, SSL. models of-
ten struggle with out-of-distribution (OOD) general-
ization, critical in real-world scenarios where data dis-
tributions shift over time. To analyze this, we examine
how mini-batches are constructed in SSL. Discrimina-
tive SSL enforces invariance across augmented views;
generative SSL reconstructs masked inputs. In both,
each anchor pair (augmentation or reconstruction)
forms a pseudo-class, turning mini-batch training into
a task sampled from a distribution over classes. How-
ever, we conduct causal analyses and find that SSL is
prone to spurious correlations—models may exploit
background or texture cues that vary across tasks. The
constructed SCMs show that these confounders dis-
tort similarity or reconstruction objectives and cannot
be removed by a unified causal rule. Consequently,
SSL models may fail to capture true task structures,
limiting their OOD generalization.

REVISITING SSL FROM A PAIRWISE PERSPECTIVE

When we consider the anchor as the label or the center of clustering, each mini-batch in the training phase can

be viewed as a multi-class classification task. X;*7 = {z", x

r; is the positive sample of the i-th category Whose clustering center is 22"’ Furthermore, the variability of

data across mini-batches implies that each mini-batch corresponds to a distinct training task or domain.

anchor1 V' consists of data from N categories, where

supervised learning (SSL) reaches its lower bound, en-
suring optimal OOD performance under worst-case
scenarios (Theorem 3.4). Motivated by this, we pro-
pose a new mini-batch sampling strategy: (i) estimate
the latent variable s for each sample using a learned la-
tent model and compute its propensity score p(z'ab¢ |
s); (ii) match sample pairs with similar or identical
scores to enforce conditional independence between
s and %! within each batch; (iii) construct mini-
batches approximating samples from the PID. This ef-
fectively removes spurious correlations during train-
ing and significantly improves the OOD generaliza-
tion of SSL. models. Extensive theoretical analysis sup-

EXPERIMENTAL RESUTLS

1: DPL (: i« 0

2: whilez = 0do

3:  Randomly sample (z;", z!#"°!) from X!, g» add to
DY, Compute ba(s;) from (z;", ziabel)

4: 141+ 1

5: end while

6: for1 <:<ado

7:  j < argmin et eXin \DP d(ba(s;),ba(s;))

8: Add (a:j ,:L';abel) to D!

9: 1<+ 1+1

10: end for

We conduct extensive experiments on various downstream tasks, including unsupervised learning, semi-
supervised learning, transfer learning, and few-shot learning. The results show that our method achieves
stable performance improvements on multiple baselines. In addition, the experiments conducted on out-of-
distribution datasets further demonstrate the etfectiveness of our method for improving SSL generalization.

VOC 07 detection VOC 07+12 detection COCO detection COCO instance segmentation

Method
APso AP AP7s APsy AP AP75 APsg AP AP7; APEZpsk APpmask  Apmask

Supervised 744 424 427 81.3 535  58.8 58.2 382 41.2 54.7 33.3 35.2
SimCLR (Chen et al., 2020) 759 46.8  50.1 81.8 555 614 5777 379 409 54.6 33.3 35.3
MoCo (He et al., 2020) 77.1  46.8  52.5 82.5 574 640 589 393 425 55.8 34.4 36.5
BYOL (Grill et al., 2020b) 77.1  47.0 4909 81.4 553  61.1 578 379 409 54.3 33.2 35.0
SimSiam (Chen & He, 2021) 77.3 485 525 82.4  57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7
SwAV (Caron et al., 2020) 75.5 465  49.6 82.6 56.1 627 58.6 384 413 55.2 33.8 35.9
VICRegL (Bardes et al., 2022) 759 474  52.3 82.6 564 629 5902 398 421 56.5 35.1 36.8
SimCLR + Ours 77.6  50.1  S51.7 853 584 639 59.2  40.6 439 57.1 359 37.1
MoCo + Ours 794  50.2 549 86.1 60.2 66.1 614 42,1 449 59.2 36.9 38.8
BYOL + Ours 79.1 504 519 83.9 587 64.1 60.6 399 437 56.2 35.1 38.6
SimSiam + Ours 80.5 350.8 544 852 595  66.1 62.3 425 439 58.1 37.2 39.8
SWAV + Ours 779 493  51.8 849 58.1 6538 62.1 40.2 439 56.9 37.3 37.9
VICRegL + Ours 779 504 539 852 58.8 653 63.1 422 453 59.1 37.8 39.9
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