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INTRODUCTION

Scene understanding is one of the core tasks in com-
puter vision, aiming to extract semantic informa-
tion from images to identitfy objects, scene categories,
and their interrelationships. Despite the progress
in this field driven by the development of Vision-
Language Models (VLMs), existing models still face
challenges when adapting to unseen complex wide-
area scenes, such as deep-sea scenes. To address
this, this paper proposes a Hierarchical Coreset Se-
lection (HCS) mechanism to enhance the adaptabil-
ity of VLMs in complex wide-area scenes. Based on
an importance function with theoretical guarantees,
HCS comprehensively considers utility, representa-
tiveness, robustness, and synergy to gradually opti-
mize the selected regions. Without additional fine-
tuning, HCS can guide VLMs to efficiently under-
stand unseen scenes of any scale using minimal and
interpretable regions, while alleviating the problem
of insufficient feature density. The proposed method
has plug-and-play capability and is compatible with
any VLM. Experimental results demonstrate that HCS
exhibits superior performance and wide applicability
across multiple tasks.

CONTRIBUTIONS

1. We explore a more challenging problem of com-
plex wide-area scene understanding, and refor-
mulate it as a coreset feature selection problem,
aiming for accurate and stable understanding
with fewer interpretable regions.

. We propose a hierarchical coreset selection
mechanism (HCS) for precise wide-area scene
understanding. It employs a theoretically val-
idated importance function to assign weights
and implements an efficient refinement strategy
for coreset selection. HCS is plug-and-play and
allows any VLM to achieve training-free under-
standing with only a few interpretable regions.

. Extensive experiments on various datasets and
tasks demonstrate the effectiveness of HCS on
VLMs for scene understanding.

CORESET THEORY

MOTIVATION AND ANALYSIS

Existing Vision-Language Models (VLMs) face sig-
nificant challenges in adapting to complex wide-
area scenes. Compared to urban or indoor envi-
ronments, such scenes—e.g., geographically intricate
deep-sea regions—exhibit greater semantic diversity
and sparser object distributions. They often contain
numerous unknown or low-frequency objects (e.g.,
rare marine species), resulting in severe long-tail ef-
fects, and are dominated by homogeneous, high-
frequency background features that obscure critical
semantics. Although VLMs possess strong seman-
tic extraction capabilities, their global attention mech-
anisms tend to prioritize frequent patterns under
heterogeneous distributions and missing categories,
leading to degraded performance in unseen wide-
area scenarios. Furthermore, the high computational
cost of training on large-scale, high-resolution data
limits their scalability in practice. To address these
issues, this paper re-examines scene understanding
from a compression-and-selection perspective, aim-
ing to develop an adaptive and interpretable region
selection mechanism for etficient VLM-based analy-
sis of wide-area scenes. Toward this goal, we propose
a theory-driven Hierarchical Coreset Selection (HCS)
framework to support scene understanding.

Figure 2: Visualization of interpretable regions.

Coreset theory provides a principled framework for data compression by constructing small, weighted subsets

of large-scale datasets that approximate the original data with respect to a given optimization objective. By
preserving essential geometric or statistical properties, coresets significantly reduce computational complexity,
making them particularly etfective for large-scale or high-dimensional learning tasks.
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Figure 3: The framework of the proposed HCS. Its integration allows VLMs, to be tested without fine-tuning (frozen), instead
training this lightweight network (HCS) for coreset selection to enhance model performance.

EXPERIMENTAL RESUTLS

Experimental results on various benchmark datasets, e.g., NWPU-RESISC45, AID, RSI-CB, TikTok dances, Trash-
Can, and GTEA, demonstrate the etfectiveness of the proposed HCS.

Table 1: Performance comparison (Accuracy %) of scene image classification on NWPU-RESISC45, AID, and RSI-CB. Unless
otherwise specified, we directly use the pre-trained models without fine-tuning and evaluate their transfer performance. The

brackets “()” indicate the effect changes of vanilla baselines after introducing HCS. More details are shown in Appendix E.

Model NWPU-RESISC45 AID RSI-CB
Top-1 ACC Top-5 ACC Top-1 ACC Top-5 ACC Top-1 ACC Top-5 ACC

ViT-B/32 1.84 4.61 0.97 4.63 6.15 15.33
ViT-B/32+HCS 17.15 (+15.31)  28.56 (+23.95) 12.17 (+11.20) 20.61 (+15.98) 19.51 (+13.36) 27.64 (+12.31)
ViT-L/14 2.23 6.85 1.37 5.53 8.89 17.26
ViT-L/14+HCS 19.23 (+17.00)  29.00 (+22.15) 15.12 (+13.75) 21.59 (+16.06) 21.32 (+12.43) 31.88 (+14.62)
CLIP 3.41 12.19 2.16 7.97 12.32 29.17
CLIP+HCS 21.36 (+17.95) 36.78 (+24.59) 18.22 (+16.06) 27.91(+19.94) 31.39 (+19.07) 47.05 (+17.88)
ContextCLIP 1.48 11.05 1.01 6.25 11.32 25.88
ContextCLIP+HCS 18.56 (+17.08) 33.12 (+22.07) 16.01 (+15.00) 24.37 (+18.12) 29.46 (+18.14) 44.95 (+19.07)
LLaVA-hf/llava-v1.6-mistral-7b-hf 41.20 52.15 35.13 49.36 52.17 59.30
LLaVA-hf/llava-v1.6-mistral-7b-hf+HCS  44.15 (+2.95) 54.48 (+2.33)  40.05 (+4.92) 54.13 (+4.77)  55.66 (+3.49)  65.59 (+6.29)
LLaVA-hf/llama3-llava-next-8b-hf 53.12 64.84 39.65 51.06 58.33 64.89
LLaVA-hf/llama3-llava-next-8b-hf+HCS  58.42 (+5.30)  69.15 (+4.31)  42.05(+2.40) 54.89 (+3.83) 60.50 (+2.17)  68.36 (+3.47)
Qwen/Qwen2-VL-7B-Instruct 61.15 75.56 46.26 62.03 68.63 76.69

Qwen/Qwen2-VL-7B-Instruct+HCS 66.12 (+4.97)  80.38 (+4.82)  51.04 (+4.78)  68.11 (+6.08)  76.19 (+7.56)  80.97 (+4.28)
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