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INTRODUCTION

Multi-Modal Learning (MML) aims to learn effective
representations across modalities for accurate predic-
tions. Existing methods typically focus on modality
consistency and specificity to learn effective represen-
tations. However, from a causal perspective, they
may lead to representations that contain insufficient
and unnecessary information. To address this, we
propose that effective MML representations should be
causally sufficient and necessary. Considering prac-
tical issues like spurious correlations and modality
conflicts, we relax the exogeneity and monotonicity
assumptions prevalent in prior works and explore
the concepts specific to MML, i.e., Causal Complete
Cause (C?). We begin by defining C*, which quanti-
fies the probability of representations being causally
sufficient and necessary. We then discuss the identifi-
ability of C” and introduce an instrumental variable
to support identifying C? with non-exogeneity and
non-monotonicity. Building on this, we conduct the
C® measurement, i.e., C*° risk. We propose a twin net-
work to estimate it through (i) the real-world branch:
utilizing the instrumental variable for sufficiency, and
(i1) the hypothetical-world branch: applying gradient-
based counterfactual modeling for necessity. Theoret-
ical analyses confirm its reliability. Based on these re-
sults, we propose C® Regularization, a plug-and-play
method that enforces the causal completeness of the
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Figure 1: Example of causal sufficiency and necessity.

Human perception integrates diverse modalities such
as vision, hearing, and touch. Multimodal learning
(MML) mimics this by learning representations from
multiple modalities for accurate prediction. Existing
methods focus on modality consistency (aligning fea-
tures across modalities) or modality specificity (preserv-
ing unique modality traits). However, from a causal
view, such representations may be insufficient or un-
necessary. We define causal sufficiency as the ability to
predict labels from representations, and causal neces-
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METHODOLOGY

To address these issues, we relax the traditional as-
sumptions of exogeneity and monotonicity, and ex-
plore causal sufficiency and necessity in MML to en-
sure representation quality. We first formalize the con-
cept of Causal Complete Cause (C*), which quantifies
the probability that label predictions (Y) change un-
der two types of interventions on the representation
(Z)—one assessing sufficiency, the other assessing ne-
cessity. We then analyze the identifiability of C* and
introduce instrumental variables V' to enable estima-
tion from observational data, even under relaxed as-
sumptions. Based on this, we propose a twin network
to estimate the C* risk, where low risk indicates high-
confidence causal completeness. This estimation faces
two key challenges: eliminating spurious correlations
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in sufficiency assessment and generating counterfac-
tuals for necessity evaluation. The twin network ad-
dresses these via (i) a real-world branch that removes
spurious effects using instrumental variables, and (ii)
a counterfactual branch that constructs counterfactu-
als through provable gradient-based perturbation. We
introduce C” Regularization (C°R), a plug-and-play
training strategy that learns causally complete multi-
modal representations by minimizing C? risk.
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Theoretical analysis establishes its reliability and pro-
vides performance guarantees for the C* risk.

We conduct extensive experiments on various downstream tasks, and the results show that the introduction
of C°R achieves stable performance improvements on multiple baselines in both the average and worst-case
accuracy. In addition, the results of visualization experiments and corner cases analyses on multiple benchmark
datasets further demonstrate the effectiveness of C* in learning causal complete causes.

Table 1: Performance comparison when 50% samples are corrupted with Gaussian noise, 1.e., zero mean with the variance
of V. “(N, Avg.)” and “(N, Worst.)” denotes the average and worst-case accuracy. The best results are highlighted in bold.

. T . - . g - - NYU Depth V2 SUN RGB-D FOOD 101 MVSA
learned representathnS by mlnlmIZIHg CB I'lSk. Ex- Slty ds the pred1Cthn Changlng When representatlons Method (0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.)|(0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.)|(0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.)|(0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.)
tensive experiments demonstrate its effectiveness. are removed. Optimizing only one leads to poor gen- CLIP (Sun et al., 2023) 69.32 6829  51.67 4854 | 5624 5473 3565 3276 | 8524 8420 5212 4931 | 6248 6122  31.64 2827
: : : : _ ALIGN (Jia et al., 2021) 66.43 6433 4524 4242 | 5732 5626 3843 3513 | 86.14 8500 5321  50.85 | 6325 6269 3055  26.44
e.rahzat.mn Or 5purious cues. (?ur experiments con MaPLe (Khattak et al., 2023) 7126 6927 5298 4873 | 6244 61.76 3451 3029 | 9040 8628  53.16 4021 | 7743 7536 4372 3882
firm this. We argue that effective MMIL, representa- CoOp (Jia et al., 2022a) 67.48 6694 4943 4562 | 5836 5631  39.67 3543 | 8833 8510 5524 5101 | 7426 7361 4258  37.29
VPT (Jia et al., 2022a) 62.16 6121  41.05 37.81 | 5472 5392 3348 2981 | 83.89 8200 5144 4901 | 6587 6498 3279 2921

CONTRIBUTIONS

1. We propose the definition, identifiability, and
measurement of causal sufficiency and neces-

tions must satisty both—i.e., be causally complete. Yet,
enforcing this is challenging: common assumptions
like exogeneity and monotonicity often fail due to
semantic entanglement, modality conflict, and non-

Late fusion (Wang et al., 2016) 69.14  68.35 51.99 44.95 62.09  60.55 47.33 44.60 90.69  90.58 58.00 55.77 76.88 7476 55.16 47.78
ConcatMML (Zhang et al., 2021) | 70.30  69.42 53.20 47.71 61.90 61.19 45.64 42.95 89.43  88.79 56.02 54.33 7542 775.33 53.42 50.47
AlignMML (Wang et al., 2016) 70.31  68.50 51.74 44.19 61.12  60.12 44.19 38.12 88.26  88.11 55.47 52.76 7491 7297 52.71 47.03
ConcatBow (Zhang et al., 2023¢c) | 49.64  48.66 31.43 29.87 41.25  40.54 26.76 24.27 70.77  70.68 35.68 34.92 64.09 62.04 45.40 40.95
ConcatBERT (Zhang et al., 2023c)| 70.56  69.83 44.52 43.29 59.76  58.92 45.85 41.76 88.20  87.81 49.86 47.79 65.59 64.74 46.12 41.81

Sity, i.e. causal Complete cause, for MML with- | . . , INOd Het, MMTM (Joze et al., 2020) 71.04 7018 5228 4618 | 6172 6094 4603 4428 | 8975 8943 5791 5498 | 7424 7355 5463 4972
. o . linear interactions. This limits the rehab111ty of tra- TMC (Han et al., 2020) 71.06 6957 5336 4923 | 60.68 6031 4566 4160 | 89.86 89.80 61.37 6110 | 7488 7110 6036  53.37
out exogeneity and monotonicity assumptions. LCKD (Wang et al., 2023b) 63.01  66.15 4231 4056 | 5643 5632 4321 4243 | 8532 8426 4743 4422 | 6244 6227 4352  38.63
ditional causal constraints in real-world multimodal UniCODE (Xia et al., 2024) 70.12 6874 4478 4279 | 5921 5855 4632 4221 | 8839 8721 5128 4795 | 6697 6594 4834 4295
, , . : : SimMMDG (Dong et al.,, 2024) | 71.34 7029  45.67  44.83 | 60.54 6031 47.86 4579 | 89.57 8843 5255 5031 | 67.08 6635 4952  44.01
. We theoret1cally demonstrate the effectiveness scenarios (The constructed SCMs illustrate this). MMBT (Kiela et al., 2019) 67.00 6584  49.59 4724 | 5691 56.18 4328 3946 |91.52 9138 5675 5621 | 7850 78.04 5535 5222
and reliabili ty o f the propose d measurement, QMF (Zhang et al., 2023c) 70.09 6881 5560  51.07 | 62.09 6130 4858 4750 | 9292 9272 6221 6176 | 78.07 7630 6128  57.61
. 3 . 3 . B o CLIP+C3R 76,54 7512 5673 5290 | 6231 5871 4159 3752 | 9293 91.80 59.77 5754 | 69.61 68.64 3958  35.89
i.e., C* risk, and propose C°R, which can be ap- / F N ‘ |5 " O observable variable MaPLe+C3R 77.07 7445 5894 5595 | 6621 6551  40.12 3734 | 9438 9351 60.63 4607 | 81.19 8151 4932 45098
: \1C, \ ¢/ Late fusion+C3R 7326 7162 5721 5098 | 64.84 6325 5335 5043 | 9409 9224 6527  59.02 | 8377 7979  62.14 5250
plied to any MML model to learn causal com- T--7 == (™ unobservable variable LCKD+C3R 7714 7512 5011 4798 | 6097 60.14 4723 4621 | 90.89 90.14 5448 5116 | 66.78 6567 4928  42.84
plete representations with low C° risk. , SimMMDG+C3R 7532 7461 4999 4722 | 6550 6458 5269 5170 | 9224 91.14 5732 5356 | 7362 7101 5165  51.07
i NS —> true correlations MMBT+C*R 7374  71.82 5435 5257 | 6147 5999 4842  46.07 | 9425 9390 6041  60.11 | 8276 81.64 62.12 5893
L F) L FY . . QMF+C*R 7758 7495 5972  59.18 | 67.35 65.84 5226 5128 | 9487 9379 6645  63.69 | 83.13 8198  66.66  64.51

. S,/ o S/ -=> Spurious correlations

. We conduct extensive experiments on various
datasets and multi-modal baselines that prove
the effectiveness and robustness of C*R.

RESOURCES

Figure 2: Structural Causal Model (SCM) for MML. Left:
causal generating mechanism, Right: the learning process.
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