Skip to content

MetaOptNet

Paper:
Meta-Learning with Differentiable Convex Optimization
Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, Stefano Soatto
CVPR 2019 (Oral)

Overview [Abstract]

Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers. However, even in the few-shot regime, discriminatively trained linear predictors can offer better generalization. They propose to use these predictors as base learners to learn representations for few-shot learning and show they offer better tradeoffs between feature size and performance across a range of few-shot recognition benchmarks. Their objective is to learn feature embeddings that generalize well under a linear classification rule for novel categories. To efficiently solve the objective, the authors exploit two properties of linear classifiers: implicit differentiation of the optimality conditions of the convex problem and the dual formulation of the optimization problem. This allows us to use high-dimensional embeddings with improved generalization at a modest increase in computational overhead. MetaOptNet achieves state-of-the-art performance on miniImageNet, tieredImageNet, CIFAR-FS and FC100 few-shot learning benchmarks.

Results

1667704440646

Citation

@inproceedings{lee2019meta,
  title={Meta-Learning with Differentiable Convex Optimization},
  author={Kwonjoon Lee and Subhransu Maji and Avinash Ravichandran and Stefano Soatto},
  booktitle={CVPR},
  year={2019}
}

Dependencies

Usage

Installation

  1. Download and decompress dataset files: miniImageNet (courtesy of Spyros Gidaris), tieredImageNet, FC100, CIFAR-FS

Or search the dataset and download it dataset in Datasets

  1. For each dataset loader, specify the path to the directory. For example, in MetaOptNet/data/mini_imagenet.py line 30: python _MINI_IMAGENET_DATASET_DIR = 'path/to/miniImageNet'

Meta-training

  1. To train MetaOptNet-SVM on 5-way miniImageNet benchmark: bash python train.py --gpu 0,1,2,3 --save-path "./experiments/miniImageNet_MetaOptNet_SVM" --train-shot 15 \ --head SVM --network ResNet --dataset miniImageNet --eps 0.1 As shown in Figure 2, it can meta-train the embedding once with a high shot for all meta-testing shots. It don't need to meta-train with all possible meta-test shots unlike in Prototypical Networks.
  2. You can experiment with varying base learners by changing '--head' argument to ProtoNet or Ridge. Also, you can change the backbone architecture to vanilla 4-layer conv net by setting '--network' argument to ProtoNet. For other arguments, please see MetaOptNet/train.py from lines 85 to 114.
  3. To train MetaOptNet-SVM on 5-way tieredImageNet benchmark: bash python train.py --gpu 0,1,2,3 --save-path "./experiments/tieredImageNet_MetaOptNet_SVM" --train-shot 10 \ --head SVM --network ResNet --dataset tieredImageNet
  4. To train MetaOptNet-RR on 5-way CIFAR-FS benchmark: bash python train.py --gpu 0 --save-path "./experiments/CIFAR_FS_MetaOptNet_RR" --train-shot 5 \ --head Ridge --network ResNet --dataset CIFAR_FS
  5. To train MetaOptNet-RR on 5-way FC100 benchmark: bash python train.py --gpu 0 --save-path "./experiments/FC100_MetaOptNet_RR" --train-shot 15 \ --head Ridge --network ResNet --dataset FC100

Meta-testing

  1. To test MetaOptNet-SVM on 5-way miniImageNet 1-shot benchmark:
python test.py --gpu 0,1,2,3 --load ./experiments/miniImageNet_MetaOptNet_SVM/best_model.pth --episode 1000 \
--way 5 --shot 1 --query 15 --head SVM --network ResNet --dataset miniImageNet
  1. Similarly, to test MetaOptNet-SVM on 5-way miniImageNet 5-shot benchmark:
python test.py --gpu 0,1,2,3 --load ./experiments/miniImageNet_MetaOptNet_SVM/best_model.pth --episode 1000 \
--way 5 --shot 5 --query 15 --head SVM --network ResNet --dataset miniImageNet